
NASA Contractor Report 36 5 1

Measurement of Fault Latency in a
Digital Avionic Mini processor

Part II

John G. McGough and Fred L. Swern

CONTRACT NASl-15946
JANUARY 1983

NASA Contractor Report 36 5 1

TECH LIBRARY KAFB, NM

llnlll~lllnllll~llllllnll111111
005b095

Measurement of Fault Latency in a
Digital Avionic Mini Processor
Part II

John G. McGough and Fred L. Swern
Bendix Corporation
Teterboro, New Jersey

Prepared for
Langley Research Center
under Contract NAS l- 15 946

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1983

TABLE OF CONTENTS

1.0 INTRODUCTION. 5
1.1 Background
1.2 Objectives of the Study.
1.3 Foreward

SUMMARY.........................- ...

FAULT MODELLING AND SELECTION
3.1 Fault Model. K
3.2 Method of Selecting Faults

DESCRIPTION OF EXPERIMENTS.
4.1 Definition of Failure Detection.
4.2 Definition of Failure Detection Coverage
4.3 Indistinguishable Faults and Effects on Coverage
4.4 Objectives of Experiments.
4.5 Experiments.

4.5.1 Search and Compute (SERCOM)
4.5.2 Linear Convergence (LINCON)
4.5.3 Quadratic (QUAD).
4.5.4 Flight Control System (FCS)

RESULTS OF EXPERIMENTS.
5.1 Distr ibution of Faults
5.2 Exper iments

5.2.1 SERCOM Experiment
5.2.2 LINCON Experiment
5.2.3 QUAD Experiment
5.2.4 FCS Experiments (Quasi-Repetitions)
5.2.5 FCS Experiments (True-Repetitions).

5.3 Urn Model Parameters
5.4 Accuracy and Confidence of Results

SUMMARY OF EXPERIMENTS.
6.1 Latency
6.2 UrnModel

SELF-TEST DESIGN AND VALIDATION
7.1 Initial Self-Test Program.
7.2 Principal Tests.
7.3 Self-Test Results.

7.3.1 Indistinguishable Faults.
7.4 Sumnary and Conclusions.

5
7
7

2.0

3.0

8

9

1:

4.0 11
11
‘12
13
15
16
16
17
18
19

5.0 22

fi
22
23
24
24
25

2265

6.0
2;
53

7.0

1

TABLE OF CONTENTS (CONT'D)

8.0 URNMODEL 68
8.1 Urn Model Description. 68

9.0 ESTIMATORS 72
9.1 Estimators for Self-Test Coverage. 72
9.2 Estimators f-or Latency 73
9.3 Estimators for Urn Model Parameters. 74
9.4 Accuracy and Confidence of Coverage Estimates. 76

9.4.1 Self-Test Coverage 76
9.4.2 Latency Estimate 78
9.4.3 Urn Model Parameter Estimates. 78

10.0 EMULATION CHARACTERISTICS. 81
10.1 BDX-930 Architecture 81
10.2 Description of the Emulator. 84

11.0 CONCLUSIONS. : 90

12.0 REFERENCES . 92

2

LIST OF ILLUSTRATIONS

FIGURE

5B

6

7

t
10
11A
11B

TITLE

Flow Diagram for LINCON. 21
SERCOM Combined Gate-Level Faults. 42
SERCOM Combined Component-Level Faults 43
LINCON Combined Gate-Level Faults. 44
LINCON Combined Component-Level Faults 45
QUAD Combined Gate-Level Faults. 46
QUAD Combined Component-Level Faults 47
Flight Control Computations Quasi-Repetitions
Combined Gate-Level Faults 48
Flight Control Computations Quasi-Repetitions
Combined Component-Level Faults. 49
Flight Control Computations True Repetitions
Combined Gate-Level Faults 50
Urn Model Distribution Flight Control Computations
True Repetitions Combined Gate-Level Faults. 51
Comparison of Fault Latency Distributions. 55
Markov Model Representation of the Urn Model 71
BDX-930 Processor. 88
Non-Faulted "And" Gate 89
Fault Model of "And" Gate. 89

LIST OF TABLES

7B
8
9

::
12

:i
15
16
17
18

:o’
21

TITLE PAGE

Failure Rates by Partition. 28
Number of Faults Injected 29
Number of Gate-Level Faults Injected by Partitions. 30
Number of Component-Level Faults Injected by Partitions . . 31
SERCOM Latency Data 32
SERCOM Latency Data 1 33
LINCON Latency Data 34
LINCON Latency Data 35
QUAD Latency Data 36
QUAD Latency Data 37
Flight Control Computations Latency Data
(Quasi-Repetitions) 38
Flight Control Computations Latency Data. 39
Flight Control Computations Latency Data. 40
Urn Model Parameter Estimates for Gate-Level Faults 41
Comparison of Gate Versus Component-Level Coverage. 56
Urn Model Parameters Combined, Gate-Level Faults. 57
CPU Self-Test Revisions Gate-Level Coverage 62
Final Self-Test Gate-Level Coverage by Partitions 63
Initial Self-Test Gate-Level Coverage by Partitions 64
Final Self-Test Component-Level Coverage by Partitions. .. 65
Initial Self-Test Component-Level Coverage by Partitions. . 66
Proportion of Indistinguishable Faults (y). 67
Error Ellipse for a Confidence Level of y = '.95 79
Maximum Error Versus Sample Size and Confidence Level ... 80
Components of the BDX-930 CPU 86
Microcircuits and Equivalent Gate Count 87

1.0 INTRODUCTION

1.1 Background

This study is a follow-on of an earlier study entitled:

"Measurement of Fault Latency in a Digital Avionic
Mini Processor" (ref. 1).

To place the present study in perspective we include a brief sumnary
of the results of the earlier study:

Surrrnary of Earlier Study

l A gate level emulation of the Bendix BDX-930 digital computer was
developed for the purpose of analyzing failure modes and effects in
digital systems. The run time of the emulator was 7000 times slower
than the BDX-930 when hosted on a VAX 11/780.

l Six software programs were emulated and faults were injected at both
the gate-level and pin-level (i.e., component-level). The resultant
computed outputs were compared with those of a non-faulted computer
executing the same program. A fault was considered detected when
these outputs differed. The results showed that:

. . Most detected faults are detected in the first repetition.
Subsequent repetitions do not appreciably increase the propor-
tion of detected faults.

. . A large proportion of faults remained undetected after as many
as 8 repetitions of the program, e.g., 60% at the gate-level.

Component-level faults are easier to detect than gate-level
l * faults. For example, after 8 repetitions, the proportion of

undetected faults were

GATE-LEVEL COMPONENT-LEVEL

61.7% 35.5%
58.2% 28%
59.5% 32.3%

for the program FETSTO, FIB and ADDSUB, respectivelyt To corro-
borate the findings of a pilot study (ref. 2) the instruction
repertoire of the BDX-930 was limited to the following instructions:

5

Load
Store
Add
Subtract
Branch
Transfer
Clear

l The results of the studycorroboratedthe findings of the pilot study
of (ref. 2). This was surprising considering that the pilot study
used an emulation of a very simple processor. As an illustration,
the pilot study indicated that, after 8 repetitions, the proportion
of undetected faults were

64.4%
53.7%
44.9%

for FETSTO, FIB,ADDSUB, respectively.

l The Urn Model, for forecasting fault latency, produced distributions
that were in close agreement with the empirical distributions.

l A self-test program of 2000 executable instructions was expressly
designed for the study. The designer was given the single require-
ment that fault coverage should be at least 95%. The resultant test
consisted of 241 separate subtests for the purpose of exercising the
entire instruction set of the BDX-930.

The results indicated that there is a significant difference in cover-
age of gate-level versus component-level faults. For example,

gate-level coverage = 86.5%
component-level coverage = 97.9%

l Only 48% of all detected faults were detected by a subtest. The
remaining detected faults were detected because the first subtest
was not computed.

l Most of the subtests were redundant, i.e., only 46 of 241 subtests
actually detected a fault.

l 62% of all detected faults were detected by the first 23 subtests.

l A large proportion of "don't care" (i.e., indistinguishable) faults
were injected: (i.e., 23.7%). These proved to be exceedingly diffi-
cult to identify.

l The micromemory prom contained the largest proportion of undetected
faults.

6

To conserve space this report omits certain details which were contained
in the earlier report, notably in the areas of statistical analyses and
descriptions of the emulator. However, the present text is self-contained;
whenever comparisons are necessary the pertinent data from the earlier report
is duplicated.

1.2 Objectives of the Study

The poor coverage of comparison-monitoring, which, the earlier study
demonstrated, could have been due to the limitedrepertoire of the-instruction
set used. As a consequence, it was decided to reprogram SERCOM, LINCON and OUAD
but this time expanding the instruction set to capitalize on 'the full power of
the BDX-930. As a final‘demonstration of failure coverage an extensive, 3-axis,
high performance flight control computation was added.

As the summary of the earlier study indicates, failure detection cov-
erage of the target self-test program was a disappointing 86.5% for gate-level
faults. As a consequence, Bendix conducted a development program (independent
of the present contract) for the purpose of upgrading the self-test to approx-
imately 95% coverage while minimizing the number of instructions and run-time.
The initial self-test was used as a baseline. The successive self-test programs
and their resultant coverages are described in Section 7.0.

1.3 Foreward

The use of trade names of manufacturers in this report does not con-
stitute an official endorsement of such products or manufacturers, either
expressed or implied by the National Aeronautics and Space Administration.

1.

2.

3.

4.

5.

6.

2.0 SUMMARY

A gate-level emulation of the Bendix BDX-930 digital computer was used
to perform fault injection experiments to determine a program's ability
to detect faults. The emulator was hosted on a VAX-11/780. The resul-
tant run-time was 7000 times slower than the BDX-930.

Four software programs were emulated and faults were injected at both
the gate-level and pin-level (i.e., component-level). The resultant
computed outputs were compared with those of a non-faulted computer
executing the same program. A fault was considered detected when their
outputs differed.

The present study was a follow-on to a previous study in which the pro-
grams were limited to a simple instruction set. The four programs of
the present study used the full power of the BDX-930 instruction set.
One of the four programs included a 3-axis, high performance flight
control system of approximately 2200 executable instructions. The
objective was to coroborate the conclusions of the previous study.

The results corroborated those of the previous study. 1,n particular:

l Most detected faults are detected in the first repetition of
a program. Subsequent repetitions do not appreciably increase
the proportion of detected faults.

l Short programs have a tendency to benefit more from subsequent
repetitions than lengthier programs.

l A large proportion of gate-level faults remained undetected
after as many as 8 repetitions of the program. For example,
in the flight control computation, 21% of distinguishable
(i.e., "CARE") faults remained undetected after 8 repetitions.

l Pin-level faults are easier to detect than gate-level faults.

A self-test program should be designed to capitalize on the hardware
mechanization of the CPU. A self-test designed to exercise instructions
without regard for the hardware mechanization tends to be inefficient
in real-time and memory.

The Urn Model can characterize fault latency distributions. It is doubt-
ful, however, that the Urn Model parameters can be predicted on the
basis of a oroaram's lenath and instruction mix.

8

3.0 FAULT MODELLING AND SELECTION

3.1 Fault Model

At the present time there is little or no data available regarding
either the mode or frequency of failures of MS1 and LSI devices. Despite this
deficiency of data, failure modes and effects analyses are regularly performed
for avionics and flight control systems. The conventional approach is to
assume a set of failure modes for each device. These are usually restricted
to faults at single pins although, occasionally, multiple faults may be con-
sidered. In most cases the failure rate of a device is assumed to be equally
distributed over the pins or over the set of postulated failure modes. Except
for special devices, faults are assumed to be static, being either S-a-O or
S-a-l.

The point to be made here is that failure modes and their rate of occur-
rence are necessarily conjectural and the credibility of the present study
suffers no less from this deficiency of data than the conventional analysis.
The authors emphasize that the emulation approach does not solve this problem.

In
modes:

0

the present study the following assumptions are made regarding failure

Every device can be represented, from the standpoint of performance
and failure modes, by the manufacturer-supplied, gate-level equivalent
circuit.

Every fault can be represented as either S-a-O or S-a-l fault at a
gate node.

The failure rate of the device is equally distributed over the gates
of the equivalent circuit.

The failure rate of a gate is equally distributed over the nodes of
the gate.

S-a-O and S-a-l faults are equally likely.

Memory faults are exclusively faults of single bits.

A memory fault is the complement of its non-faulted state.

Faults are injected into all devices except the main memory. In the
case of the microprogram memory, which is emulated at the functional level,
faults are injected into the memory cells where they remain active for the
duration of the test. Faults are injected at an input or output gate node,

and also remain active for the duration of the test. When a fault is injected
at an output node it is allowed to propagate to all nodes and devices that are
physically connected to the failed node. When a fault is injected at an input
node it does not propagate back to the driving node. This strategy provides
a wider variety of failure modes than would otherwise be possible if propaga-
tion were allowed. The fault model, although conjectural at the present time,
can be updated as fault data becomes available. The proposed model provides
a simple, automatic and consistent method of generating faults. The resultant
fault set includes a rich assortment of static and dynamic (i.e., data-dependent)
faults.

3.2 Method of Selecting Faults

The method of selecting faults is implicit in the fault model.
Explicitly,

l Each device is assigned a failure rate.

l The failure rate is equal
level representation.

ly distr ibuted over the gates of the gate-

l The failure rate of each gate is equally distributed over the nodes
of the gate.

l The failure rate of each node is equally distributed over S-a-O and
S-a-l faults.

l As a result of this procedure, each S-a-O and S-a-l fault is assigned
a probability of occurrence proportional to the prescribed failure
rate. The resultant fault set is then randomly.sampled with each
fault weighted by its probability of occurrence. It is noted that,
according to this procedure, faults in devices with high failure rates
will be selected more frequently than faults in devices with lower
failure rates.

The above procedure does not distinguish between gate-level and component
(i.e.,pin)-level faults except by probability of occurrence; the method auto-
matically assigns failure rates to pins. However, a different selection
procedure was employed for component-level faults. For these faults is was
assumed that:

l The failure rate of each device is equally distributed over the pins.

While this assumption violates the prescribed fault model it is consis-
tent with the conventional method of estimating fault detection coverage by
simulating faults in actual hardware. As a consequence, all component-level
detection estimates obtained in the study are estimates that would be obtained
by proponents of this approach.

10

4.0 DESCRIPTION OF EXPERIMENTS

4.1 Definition of Failure Detection

In the present study, fault coverage and latency estimates are obtained
by employing two conventional techniques of failure detection: comparison-
monitoring and self-test.

In comparison-monitoring a set of computed variables is compared with a
corresponding set computed in another processor. If it is arranged that both
processors operate on identical inputs and are closely synchronized, then any
difference in a computed variable signifies that one of the processors has
failed. In practice each processor executes an algorithm which compares the
appropriate variables and signals a discrepancy when such exists. In the
present study this algorithm was omitted; a fault is considered to be detected
if a difference between corresponding variables exists irrespective of the
ability of either processor to recognize the difference or signal the discre-
pancy. Thus, the fault coverage obtained from the study is somewhat more
optimistic than would be obtained in practice.

In self-test, on the other hand, each component of the processor is exer-
cised by a set of computations designed specifically to test that component.
The results of each computational set are compared with pre-stored values and
any difference signifies that the fault was detected. In practice, and in
the study, the processor increments a register after the successful comple-
tion of each test and before proceeding to the next test. If the test is not
successful the program exits. After an interval of time equal to the maximum
time to complete the program, the contents of the counter are decoded. If the
value exactly equals that total number of tests, the fault was not detected.
Otherwise the fault was detected.

It is emphasized that "failure detection", as it is used in the present
study, means almost exactly what it means in an actual airborne avionic sys-
tem. This is in marked contrast to the commonly employed alternate approach
of assuming that a failure is detected whenever the effect to the failure
reaches an accessible bus or register, even though the program may not be
interrogating these devices at that time.

In the following paragraphs a description is given of the actual compu-
tations involved in the experiment with particular emphasis on the explicit
definition of "failure detection" in each instance.

11

4.2 Definition of Failure Detection Coverage

We assume that a test procedure is given for detecting failures of a
component, C. Each failure mode of C will require a non-zero time for detec-
tion. By considering all failures of C and all combinations of inputs and
internal states of C, we obtain in principle, if not in practice, a probabil-
ity density function for time-to-detect, which is measured from the onset of
the failure to the time of detection.

Denoting this density by pdf (.c) where

'C = time-to-detect = latency time

we define

Test Coverage

r

1) 1 - a(T) =
5

pdf(X)dX

0

= probability of detecting a failure of C in

the interval 0 4 t 5 T.

Observe that, according to this definition, test coverage is a function
of latency time. The definition can be extended to all devices of the com-
puter as follows:

Subdivide the computer into mutually exclusive components Cl, C2,

Ck with failure rates X1, X2, . . . , xk, and test CoVerageS 1 - a,(T),

l- a2('c) 3 l- a,(r)* respectively.

Set Pdfi (~1 = probability density for time-to-detect failures of

Ci, i = 1, 2, . . . , k.

Then the pdf for all failures of the computer is

2) PDF = in ~ pdfi(~)

i=l

where A= x1 + ii2 + + xk.

12

Test coverage of the whole computer is then

i=k

3) 1 - a(r) = c - ai 1.
i=l

The method of selecting faults, described in Section 3, is consistent with
this definition.

From (3) we obtain.

i=k

4) a(T) = c
Xi
7 Fi(T)s as expected.

i=l

One of the objectives of the present study is to obtain estimates of the
probability density function, pdf(T). These estimates are presented in
Section 5.

4.3 Indi.stinguishable Faults and Effects on Coverage _--~

During the development of the emulator it became apparent that a signi-
ficant proportion of components had no affect whatsoever on the digital pro-
cess. For the most part, these components are associated with unused pins,
e.g., a complementary output of a flip-flop. However, there are other com-
ponents whose lack of effect are not as obvious as, for example, a component
that only affects the process when it is faulted. Certain micromemory bits
are in this category. In order to distinguish between these categories of
faults we are lead to the following informal definitions:

A fault that has no affect on the computational process is

indistinguishable. All other faults are distinguishable.

We note that a distinguishable fault has the property that there exists
a software program the output of which differs from that of the same program
executed by an identical but non-faulted processor.

Effects on Coverage

The presence of indistinguishable faults can lead to erroneous and mis-
leading estimates of coverage. In theory, indistinguishable faults should be
disqualified from the emulation or from the fault selection process. This is
consistent with the definition of coverage which implicitly assumes that
faults are distinguishable. Unfortunately, in order to disqualify indistin-
guishable faults from the emulation or from the fault selection process they

13

must be first identified and this is a non-trivial task because of the .large
number of possible faults. The approach taken in this study was to select
faults irrespective of their distinguishability properties and analyze only
those faults that were undetected by Self-Test. The proportion of indistin-
guishable faults from this set was then used as an estimate over all faults.

We now indicate, briefly, how indistinguishable faults affect coverage.

If
Y = proportion of components yielding indistinguishable faults

and
1 -a = coverage of distinguishable faults.

then
1 -a = desired coverage

and

5) (1 - a) (1 - y) = coverage when indistinguishable faults are
counted as undetected. We note, incidentally
that

6) (1 - a) (1 - y) + y = coverage when indistinguishable faults
are counted as detected.

The estimate of (5) will be obtained if indistinguishable faults are not
disqualified. Then, coverage estimates will be in error by the factor, l-y.

In the more general case it may be more convenient to estimate the pro-
portion of indistinguishable faults by partition since the affect on coverage
is a function of the relative failure rate of the partition.

Let 'i = failure rate of Partition #i, i = 1, 2, l..., 6.

'i = proportion of indistinguishable faults in Partition #i.

1 - ai = coverage of distinguishable faults in Partition #i.

x = x1 + x2 + + ii6 = total failure rate.

From the previous section, i f all faults are distinguishable then
coverage is given by

6

7) l-a= c y (l-CXi)

i=l

14

If, however, indistinguishable faults are counted as undetected then the
coverage actually obtained is

6

8) l-a= c y (1 - ai) (1 - Vi)’

i=l
,

We note that, if indistinguishable faults are disqualified, the true
coverage is

6

c ‘i (1 - ai> (1 - Vi)

i=l
9) I-a= .

6 -

i=l

From (8) it can be seen that the required accuracy of an estimate of yi

depends upon the relative failure rate, Xi/h. If Xi is sufficiently small

then the effect of an inaccurate estimate of yi is negligible.

4.4 Objectives of Experiments

Most airborne systems, present and projected, employ comparison-monitoring,
self-test or a combination of both to achieve the requisite detection and
isolation capability. One of the problems of fault detection, by either
method, is that a fault may not manifest itself at either a comparison-
monitored variable or at an accessible output of self-test until the faulted
component is suitably exercised. As a consequence, faults can remain latent
for long periods of time. This is the significance of latency time, T, in
the definition of test coverage of Section 4.2.

One of the objectives of the experiments is to estimate T for the test
programs described in Section 4.5. Using comparison-monitoring the probabil-
ity distribution of 'I: will be estimated for each of the four programs and
the interdependence of these distributions and the number and type of instruc-
tions will be ascertained.

15

4.5 Experiments

The fault injection experiments were conducted using four programs, each
of which was coded in the assembly language of the BDX-930.

In the following descriptions only the set of computations labelled
"compute" were performed by the target BDX-930 CPU; all other computations,
selections, comparisons, etc. were performed by the emulation host computer
Executive. Needless to say, there were no failures in these latter computations.

When the non-failed processor completed a computation* and before the
start of the next computation the Executive recomputed all initializing vari-
ables and stored them in the appropriate locations of the scratchpad memory.

In the oarallel mode of operation , when 32 computers are simultaneously
being emu
32 copies

la&d, the initial i
of the scratchpad

zing variables are stored simultaneously in the:
memories.

4.5.1 Search and Compute (SERCOM)

a. Procedure

TO) Select 8 sets of integers, (Ak, Bk, Ck), at random, each component

from the interval

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store the (Ak, Bk, Ck) in successive locations of memory.

T3) Compute and store in successive locations of memory

‘lk = Bk + ck

'2k = Bk

'lk = Bk + ck

s2k = Bk - ck

if Bk 5 A - k

if Ak < Bk and Ck s Ak

* In the parallel mode of operation one of the emulated processors is non-
faulted and, as a consequence, the end of its computation cycle can be
determined from its program counter.

16

b. Instruction Set

During a typical computation the following instructions were executed:

LOAD/STORE 11
STACK OPS 4
ADD/SUBTRACT 4
MULTIPLY 1
BRANCH 12
TRANSFER 8
MISCELLANEOUS

a. Procedure

slk = Bk - ck
'2k = Bk x ck

if

T4) When the non-failed processor

Ak < Bk and Ak < Ck.

completes its last instruction compare

Slks S2k term by term, in both the non-failed and

If ‘lk or S2k is the first variable to miscompare

slks s2k compare set L = 0 (L = Latency Period).

failed processors.

set L = K. If all

INSTRUCTION FREQUENCY

4..5.2 Linear Convergence (LINCON)

TO) Select the following integers from the indicated intervals:

MOs
-8 g MO $ 8

yOs

Xl’ X2’

Assume that Xl < X2 < < XB.

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store MO, Y,, XI, X2, XB, in successive locations. of memory.

17

- .

T3) COlTlpUte Mk, Yk, for K = I, 2, 8 as specified in the flow

diagram of Figure 1, and store in successive locations of memory.

T4) When the non-failed processor completes its last instruction compare

Ml, Yl, M8, Y8, term by term, in both the non-failed and failed

processors. If Mk or Yk is the first variable to miscompare set

L=K. If all Mk, Yk compare set L=o.

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION FREQUENCY

LOAD/STORE
STACK OPS
ADD/SUBTRACT
MULTIPLY
BRANCH
TRANSFER
MISCELLANEOUS

69
0

15

3:
0
5

124

4.5.3 Quadratic (QUAD)

a. Procedure

TO) Select 8 sets of integers,
indicated intervals:

(Ak, Bk, Ck' Xk), at random from the

Ap Bk, ck' O$X<215- 1 =

'k' -10 2 xk =< 10 .

For each fault:

Tl) Preset the program counter to the address of the first instruction.

T2) Store the (Ak, Bk, Ck, Xk) in successive locations of memory.

18

T3) Compute and store in successive locations of memory (overflows are
ignored):

Sk = (A$$$ - Bkxk - ck

K = 1, 2, 8 .

T4) When the non-failed processor completes its last instruction, com-

pare Sl, S2, S8, term by term, in both the non-failed and

failed processors. If SK is the first variable to miscompare set

L = K. If all Sk compare set L = 0.

b. Instruction Set

During a typical computation the following instructions were executed:

INSTRUCTION

LOAD/STORE
STACK OPS
ADD/SUBTRACT
MULTIPLY
BRANCH
TRANSFER
MISCELLANEOUS

FREQUENCY

11
4
3
3
6
9
5 -

41

4.5.4 Flight Control System (FCS)

FCS was an existing 3-axis, high performance flight control computation
for an advanced aircraft. The program consisted of seven modules:

::
Pitch axis control law.
Left horizontal tail cmd (TLCMD).

3. Right horizontal tail cmd (TRCMD).
4. Yaw axis control law and rudder cmd (RCMD).

2:
Roll axis control law.
Left flaperon cmd (FLCMD).

7. Right flaperon cmd (FRCMD).

All integrators were initialized to zero for each run and each sensor
input was selected at random for each pass through the program. The compara-
tors were located at the actuator commands, i.e., at TLCMD, TRCMD, RCMD, FLCMD
and FRCMD.

19

Because of the extreme length of the FCS program (e.g., 2,200 instruc-
tions, 13,729 microcycles) it was not possible to run the entire program for
eight repetitions for each of 1,000 faults, as was intended, initially.
Instead, a compromise was reached in which the program would be run for a
single repetition for each of 1,000 faults and for 8 repetitions for each of
200 faults.

l Single Repetition Experiments

In order to introduce latency during a single repetition the program
was executed in parts,
repetition".

with each part designated as a "quasi-
These quasi-repetitions were:

Quasi-Repetition #l

Pitch control law.
1: Left horizontal tail cmd (TLCMD)

Quasi-Repetition #2

. . Retaining pitch control law computations, right horizontal tail
cmd (TRCMD).

Quasi -Repetition #3

. . Yaw axis control law.

. . Rudder cmd (RCMD)

Quasi-Repetition #4

. . Roll control law.

. . Left flaperon cmd (FLCMD)

Quasi-Repetition #5

. . Retaining roll control law computations, right flaperon cmd (FRCMD).

l Eight Repetition Experiments

In these experiments the seven modules (i.e., the five, quasi-repetitions)
were executed for eight, complete repetitions for each injected fault.

In all of these experiments when the non-failed processor completes its
last instruction the resultant commands are compared in both the non-failed
and failed processors. Any discrepancy between corresponding commands desig-
nates a detected fault. When a fault is detected the preprocessor ignores
detection in subsequent repetitions.

20

I

I YES I YEi

FIGURE 1 FLOW DIAGRAM FOR LINCON

5.0 RESULTS OF EXPERIMENTS

In this section the data from the experiments is presented concisely
and with a minimum of commentary. A detailed analysis of the results is
given in the next section.

5.1 Distribution of Faults

As indicated previously the selection of faults was random, with each
device weighted in proportion to its failure rate. The fail,ure rates of
individual devices are given in Table 20. The failure rates of each parti-
tion of the CPU are given in Table 1.

The number of faults injected during each experiment are given in Table 2
for each of the four programs. The number of faults injected in each parti-
tion are given in Table 3. Once selected, the same faults were used in all
experiments.

5.2 Experiments

To simplify the presentation material graphs and latency distributions
wi 11 only be given for combined faults, irrespective of partition. However,.
the distributions for S-a-O, S-a-l faults, by partitions, are given in tabular
form.

For the purpose of comparison the latency distributions obtained from
(ref. 1) are superimposed on the corresponding histograms obtained under the
conditions of the present study. Also shown are the proportion of undetected
faults after eight repetitions , corrected for indistinguishable faults. It
is noted in Section 7.0 that, based on an analysis of 6600 faults, the pro-
portion of indistinguishable gate faults is 16.5%.

5.2.1 SERCOM Experiment

After each injected fault SERCOM was executed for 8 repetitions. The
resultant histograms of detected faults versus repetitions to detection are
shown in Figures 2a, 2b. Tabular results are given in Table 4.

Figure 2a, Summarized
(Combined, gate-level faults)

l 53.6% undetected after a single repetition.

l 46.4% detected in the 1st repetition.

l 45% undetected after 8 repetitions.

l 34.1% undetected after 8 repetitions when corrected for
indistinguishable faults.

22

Figure 2b, Summarized

(Combined, Component-level Faults)

l 31.8% undetected after a single repetition.

l 68.2% detected in the 1st repetition.

l 19.2% undetected after 8 repetitions.

l 3.2% undetected after 8 repetitions when corrected for
indistinguishable faults.

5.2.2 LINCON Experiment

After each injected fault LINCON was executed for 8 repetitions. The
resultant histograms of detected faults versus repetitions to detection are
shown in Figures 3a, 3b. Tabular results are given in Table 5.

Figure 3a, Summarized

(Combined, gate-level faults)

l 46.5% undetected after a single repetition.

l 53.5% detected after a single repetition.

l 44.9% undetected after 8 repetitions.

l 34% undetected after 8 repetitions when corrected for
indistinguishable faults.

Fiqure 3b, Summarized

(Combined, component-level faults)

l 19.2% undetected after a single repetition.

l 80.8% detected after a single repetition.

l 18.7% undetected after 8 repetitions

l 2.6% undetected after 8 repetitions when corrected for
indistinguishable faults.

23

5.2.3 QUAD Experiment

After each injected fault QUAD was executed for 8 repetitions. The
resultant histograms of detected faults versus repetitions to detection are
shown in Figures 4a, 4b. Tabular results are given in Table 6.

Figure 4a, Summarized

(Combined, gate-level faults)

o 49.3% undetected after a single repetition.

o 50.7% detected after a single repetition,

l 41.3% undetected after 8 repetitions,

l 29.7% undetected after 8 repetitions when corrected
for indistinguishable faults.

Figure 4b, Summarized

(Combined, component-level faults)

o 23.6% undetected after a single repetition.

l 76.4% detected after a single repetition.

l 17.1% undetected after 8 repetitions.

l 0.72% undetected after 8 repetitions when corrected
'for indistinguishable faults.

5.2.4 FCS Experiments (Quasi-Repetitions)

After each injected fault FCS was executed for a single repetition.
However, as described in Section 4.5.4, the program was executed in 5 parts,
designated as quasi-repetitions. The .resultant histograms are shown in
Figures 5a, 5b. Tabular results are given in Table 7.

Figure 5a, Summarized

(Combined, gate-level faults)

l 43% undetected after quasi-repetition #l.

l 57% detected after quasi-repetition #l.

l 41.9% undetected after a complete pass.

24

l 30.4% undetected after a complete pass when corrected
for indistinguishable faults.

Figure 5b, Summarized-

(Combined, component-level faults)

l 16% undetected after quasi-repetition #l,

l 84% detected after quasi-repetition #1.

l 15.8% undetected after a complete pass.

l 0% undetected after a complete pass when corrected for indistinguish-
able faults.

It is noted that, once a fault has been detected, the preprocessor ignores
detection in subsequent repetitions. This is the reason, for example, that
Quasi-Repetitions #2, #3, #4 and #5 show poor coverage relative to Quasi-
Repetition #l in Figure 5, even though the computations are similar.

5.2.5 FCS Experiments (True-Repetitions)

After each injected fault FCS was executed for 8 repetitions. The re-
sultant histogram is shown in Figure 6. Tabular results are given in
Table 8.

Figure 6, Summarized-

(Combined, gate-level faults)

l 37.5% undetected after a single repetition.

l 62.5% detected after a single repetition.

l 34% undetected after 8 repetitions.

l 21% undetected after 8 repetitions when corrected
for indistinguishable faults.

5.3 Urn Model Parameters

The parameters of the Urn Model were estimated for SERCOM, LINCON, QUAD-
and FCS,using the estimators defined in Section 9.3 for combined, S-A-O and
S-A-l faults. The resultant estimates of a, P,.Po, as
8.0 and 9.3, are given in Table 9. All estimates were
petitions of each program.

l defined in Sections
obtained using S're-

As an illustration of the Urn Model "fit" Figure 7 shows the resultant
Urn Model distribution superimposed on the.empirical di stribution for FCS.

25

5.4 Accuracy and Confidence of Results

The accuracy of coverage estimates will be given for combined, gate-level
faults, only. The estimates are based on the total set of faults irrespective
of their distinguishability.

SERCOM (1000 Faults)

After 8 repetitions 55% of all faults were detected. The error, at
the 95% confidence level, is

E = 1.96 .0308 (3.08%)

LINCON (1000 Faults)

After 8 repetitions 55.1% of all faults were detected. The error, at
the 95% confidence level is

S = .0308 (3.08%)

QUAD (1000 Faults)

After 8 repetitions 58.7% of all faults were detected. The error, at the
95% confidence level, is

E = 1.96 @@ = .0305 (3.05%)

FCS (200 Faults)

After 8 repetitions 66% of all faults were detected. The error, at
the 95% confidence level, is

E = 1.96 /* = .066 (6.6%)

Urn Model Parameters-

The accuracy i-s illustrated for the QUAD Program.
There

Ppo
^, .864
z.587

a 3 .667

From Section 9.4.3 the errors at the 95% confidence levels are

cp = 1.96 /m7 = .028 (2.8%)

26

E
PO

= 1.96 q&g= = .031 (3 1%) .

‘a = 1.96 (.667)2 (.333)
= .084 (8.4%)

1000 x .587 x .136

27

PARTITION

1

2

3

4

5

6

TABLE 1

FAILURE RATES BY PARTITION

FAILURE RATE (MIL-HDBK-2175)

7.1014 x d /HR

5.8223 x loo6 /HR

7.4706 x 10°6/~~

9.4863 x 1O-6 /HR

7.056 x 1O-6 /HR

1.1867 x 1O'6 /HR

TOTALS 38.1233 x 1O'6 /HR

PROPORTION
OF TOTAL

.186

.153

.196

.249

.185

.031

1.0

28

EXPERIMENT

SERCOM

LINCON

QUAD

FCS #l

FCS #2

TABLE 2

NUMBER OF FAULTS INJECTED ___ -

GATE-LEVEL COMPONENT LEVEL

1000 1000

1000 1000

1000 1000

1000 500

200 X

29

TABLE 3A

NUMBER OF GATE-LEVEL FAULTS INJECTED BY PARTITIONS

PROGRAMS: SERCOM, LINCON, QUAD

PARTITION S-A-O

1 90

2 89

3 117

4 111

5 79

6 18

504

PROGRAM: FCS (1000 FAULT CASE)

PARTITION S-A-O S-A-l COMBINED

1 80 89

2 77 76

3 106 106

4 126 101

5 102 103

6 18 16

509 491

S-A-l CQMBINED

92 182

83 172

105 222

120 231

79 158

17 35

496 iii

169

153

212

227

205

34

30

TABLE 3B

NUMBER OF COMPONENT-LEVEL FAULTS INJECTED BY PARTITIONS

PROGRAMS: SERCOM, LINCON, QUAD

PARTITION S-A-O S-A-l COMBINED

1 122 124 246

2 104 104 208

3 147 138 285

4 glJ 120 261

514 786 1000

PROGRAM: FCS (500 FAULT CASE)

PARTITION S-A-O S-A- 1 COMBINED

1 55 48 103

2 62 52 114

3 67 73 140

4 74 69

258

143

242 500

31

TABLE 4a SERCOM LATENCY DATA

GATE-LEVEL FAULTS

DETECTED FAULTS
FAULTS

INJECTED
PARTITION PARTITION I I , ,

)‘l)‘l t$ M2 N; M3 N3 tj4 N4 M5 N5 M6 N6 M7 N7 M8 N8 M N t$ M2 N; M3 N3 tj4 N4 M5 N5 M6 N6 M7 N7 M8 N8 M N

p1 p1 60 60 68 2 68 2 1 0 1 0 2 2 0 0 0 010 0 0 0 010 00 00

p2 p2 48 48 62 10 62 10 3 0 3 0 0 0 000~000 000~000 00 0 00 0 0 0 89 89 8: 8:
I I

p3 p3 67 67 61 6 61 6 12 0 12 0 0 0 0 0 5 100 0 0 5 100 00 0 00 0 0 0 117 117 105 105

p4 p4 31 31 62 14 62 14 6 0 6 0 0 0 0 0 6 820 0 0 6 820 001 001 1 1 111 111 12c 12c
I I

p5 p5 2 2 21 21 10 10 0 0 001 0 001 0 0 0 0 0 0,o 0 0,o 0 0 0 79 79 75 75
. .

'6 '6
1 1 01 01 10 10 0 0 0 0 0 000 0 0 0 000

1 1
00 0 00 0 0 0 17 17 1 1 1E 1E

TOTAL TOTAL
209 209 255 34 255 34 24 0 24 0 2 2 0 0 12 930 0 0 12 930 00 1 00 1 1 1 503 503 49; 49;

L L

Mi = Detected S-a-O Faults, ith Cell

N..
1

= Detected S-a-l Faults, ith Cell

TABLE 4b SERCOM LATENCY DATA

COMPONENT LEVEL FAULTS

FAULTS
INJECTED

M N

DETECTED FAULTS

PARTITIOM

“l N3 “4 N4 ‘8
M2 N2 M3

79

3 8 0

14 6 0

14 4 0

69 25 14 16

349 56 32 16

“6 N6

0 0

0 0

0 0

0 0

% *5

0 0

0 0

0 0

0 0

0 0

M7 N7 93

00 0

00 0

00 0

00 3

00 3

p1 94 3 0 0 0 126 -.i

p2 60 0 0 0 0 104

p3 110 0 2 3 2 153

p4 69 9 0 0 0 105 ‘:, 1

‘6

TOTAL 2 488 333 12 3 2 512

Mi = Detected S-a-O Faults, ith Cell

Ni
= Detected S-a-l Faults, ith Cell

w
w

TABLE 5a LINCON LATENCY DATA

GATE-LEVEL FAULTS

DETECTED FAULTS
FAULTS

INJECTED
PARTITION a

)‘l
N1 M2 N2 M3 N3 t14 N4 M5 N5)I6 N6 MI N7 1'8 N8 M N

pi 68 70 0 0 0 0 01 0 0 000 00 0 0 90 92

p2 66 65 0 0 0 0 C 0 0 000 00 0 0 89 83

p3 66 69 0 0 0 0 C 00 000 01 0 0 117 105

p4 57 68 1 2 1 0 1 0 0 201 12 1 1 111 120

p5 2 31 00 0 0 0 0 000 01 0 0 79 79
*

‘6 100 00 0 I- O 0 0 0 0 0 0 0 0 17 18

TOTAL
260 275 2 2 1 0 1 0 0 2 0 1

I
1 4 1 1 503 497

&

i

Mi
= Detected S-a-O Faults, ith Cell

Ni = Detected S-a-l Faults, ith Cell

--

TABLE 5b LINCON LATENCY DATA

COMPONENT LEVEL FAULTS

DETECTED FAULTS I FAULTS
INJECTED

PARTITION

!‘l N1 M2 N2 M3 N3 t14 N4 M5 N5 M6 N6 M7 N7 b'8 Ng M N
.

p1 105 119 0 0 0 0 0 0 0 000 00 0 0 120 126

p2 83 85 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 104 104

p3 96 96 0 0 0 0 0 0 0 000 00 0 0 147 138

p4 118 106 3 0 0 0 000 011 00 0 0 142 119

p5

'6

TOTAL
402 406 3 0 0 0 000 011 00 0 0 513 487

Mi
= Detected S-a-O Faults, ith Cell

Ni = Detected S-a-l Faults, ith Cell

TABLE 6a QUAD LATENCY DATA

GATE LEVEL FAULTS

i

i

DETECTED FAULTS DETECTED FAULTS FAULTS FAULTS

PARTITION s PARTITION s
,INJECTED ,INJECTED

)‘l)‘l t$ M2 N2 Id3 N3 t14 N4 M6 N5 M6 N6 M7 N7 t$ M2 N2 Id3 N3 t14 N4 M6 N5 M6 N6 M7 N7 1’8 t48 t" td 1’8 N8 td W

p1 p1 58 58 63 63 3 3 1 0 1 0 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 90 90 92 92

p2 p2 58 58 61 10 61 10 4 2 4 2 1 1 C C 0 0 0 0 000 000 00 00 0 0 0 0 89 89 83 83
1 1

p3 p3 70 70 67 8 67 8 5 0 5 0 0 0 0 0 0 0 0 0 000 000 00 00 0 0 0 0 117 117 105 105

p4 p4 54 54 70 14 70 14 9 5 9 5 3 3 n n 2 2 0 0 000 000 00 00 0 0 0 0 111 111 120 120

p5 p5 2 2 22 22 20 20 0 0 C C 0 0 0 0 000 000 00 00 00 00 79 79 79 79

‘6 ‘6 0 0

I I TOTAL TOTAL I,,:I I,,:I ,,; 311 ,,; 311 2d 1, 2d 1, 1, 1,

C C

l/ l/ 1, 1, 1, 1, i 1, 1, i 1, 1, 11 : 11 : 1 1 :I : :I : ,511, ,511, ,::I ,::I

Mi = Detected S-a-O Faults, ith Cell

Ni
= Detected S-a-l Faults, ith Cell

TABLE 6b QUAD LATENCY DATA

COMPONENT LEVEL FAULTS

W
U

DETECTED FAULTS I FAULTS
INJECTED

p4 126 105 8 2 0 1 0 1 0 000 00 0 0 141 120

p5

‘6

TOTAL
384 380 37 15 3 5 o 1 o 000 00 4 0 514 486

Mi
= Detected S-a-O Faults, ith Cell

Ni = Detected S-a-l Faults, ith Cell

TABLE 7a FLIGHT CONTROL COMPUTATIONS LATENCY DATA
(QUASI-REPETITIONS)

GATE LEVEL FAULTS

DETECTED FAULTS
FAULTS

PARTITI3N
JNJECTED

Ml tJl M2 N2 M3 N3 t14 N4 M5 N5 M6 N6 M7 N7 w8 N8 t-1 tJ

p1 67 77 0 0 0 0 0 0 0 000 00 0 0 80 89

p2 61 74 0 0 0 0 0 0 0 000 00 0 0 77 76

p3 71 70 0 0 0 0 0 0 0 000 00 0 0 106 106

p4 61 64 3 0 6 1 0 0 0 000 00 0 0 126 101

p5 11 12 0 0 0 0 0 0 0 000 00 0 0 102 103
.

'6 111 00 0 0 0 0 0 0 0’0 0 0 0 18 16

TOTAL
272 298 4 0 6 1 0 0 0 000 00 0 0 ,509 491

Mi = Detected S-a-O Faults, ith Cell

Ni = Detected S-a-l Faults, ith Cell

TABLE 7b FLIGHT CONTROL COMPUTATIONS LATENCY DATA
(QUASI-REPETITIONS)

COMPONENT LEVEL FAULTS

nC'rPTED FAULTS IJLILL

PARTITION 1 ,

5 H1 M2 N2 M3 N3 'I4 N4 M5 N5 M6 N6 M7 N;

p1 51 43 0 0 0 0 0 0 0 000 00 00 55 48

p2 54 47 0 0 0 0 0 0 0 000 00 00 62 52

p3 44 55 0 0 0 0 0 0 0 000 00 00 67 73

p4 65 61 0 0 1 0 0 0 0 000 00 00 74 69

p5

I

'6

TOTAL 214 206 0 0 1 0 0 0 0 0 0 0 0 0 0 0 258 242
1

Mi = Detected S-a-O Faults, ith Cell

Ni = Detected S-a-l Faults, ith Cell

TABLE 8 FLIGHT CONTROL COMPUTATION LATENCY DATA
(TRUE REPETITIONS)

GATE LEVEL FAULTS

1

PARTITIOFI

p1

p2

p3

p4

p5

'6

TOTAL

Mi = Detected S-a-O Faults,

DETECTED FAULTS

.

M3 N3 t14 N4 M5 N5 .

0 0 000 00

0 0 000 00

0 0 000 00

ith Cell

N6 M7

0 0

0 0

0 0

0 0

0 0

0; 0

0 0

N7
I

0

0

0

0

0

0

0

1 FAULTS
I JNJECTED

0 0 17

0 0 11

0 0 22

0 0 29

010 17

00 4

oi 0 100
Ir

N

15

17

21

27

Ni = Detected S-a-l Faults, ith Cell

TABLE 9

URN MODEL PARAMETER ESTIMATES FOR GATE-LEVEL FAULTS

a P PO

SERCOM COMBINED .4914 .8436 .550

S-A-O .325 .807 .515

S-A-l .507 .876 .586

LINCON COMBINED .2424 .971 .551

S-A-O .3 .9774 .5288

S-A- 1 .2173 .9649 .5734

QUAD COMBINED ,667 .8637 .587

S-A-O .6956 .835 .577

S-A-l .6274 .892 .597

FCS COMBINED .875 .947 .66

S-A-O .857 .906 .64

S-A-l 1.0 .985 .68

41

SERCOM
COMBINED-GATE-LEVEL FAULTS

a

42

=.I# UNDETECTED, CORRECTED FOR
lNDlSTlNGUlSHABLE FAULTS)

/ FROM (REF. 1)

5a96
0.2% 93% 0.2%

I * I I , I I I I 1 I 1 1 I I 8 1
1 2 3 4 5 6 7 8 9 10 11

TIME TO DETECT (REPETITIONS~

i

i

i

1

FIGURE 2ii

0

SERCOM
COMBINEiD COMPONENT-LEVEL FAULTS

, FROM (REF. 1)

19.2% UNbETECTED

(3.2% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

#.8X

0.5%
I I 1 1 I I

1 2 3 4 5 6 7 8 9 10 11
TIME TO DETECT (REPETITIONS)

43
FIGURE 28

0

I --

5

L

LINCON
COMBINED GATE-LEVEL FAULTS

, FROM (REF. 1)

(51.7%).

449% UNDETECTED

(3.0% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

L

$ 4 I 5 8 7 ; 9’ 16 1;
TIME TO DETECT (REPETITIONS)

44
FIGURE 3A

LINCON
COMBINED COiiPONENT-LEVEL FAULTS

--
, FROM (REF. 11

76.6%)

18.7% UNDETECTED

(2.6% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

6 6 8
TIME TO DETECT (REPETITIONS)

45
FIGURE 38

100

a

46

QUAD
COMBINED GATE-LEVEL FAULTS

-.-~-- -.-. .

41.3% UNDETECTED

(29.7% * UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

iO.7’ -

/
FROM (REF. 1)

143.2%)

1 2 3 4 5 6 7 8 9 10 11
TIME TO CETECT (REPETITIONS)

FIGURE 4A

loo(

400

a

OUAD
COMBINED COMPONENT-LEVEL FAULTS

'6.49

-

-

-

, FROM (REF. 1)

(71.8%)

17.1% UNDETECTED

(0.72% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)
-

5.2%

12 3 4 5 8 7 8 9 10 11
TIME TO DETECT (REPETITIONS) 47

FIGURE 46

FLIGHT CONTROL COMPUTATIONS
QUASI-REPETITIONS
COMBINED GATE-LEVEL FAULTS

419%. UNDETECTED

(30.4% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

1 2 3 4 5 6 7 8 9 10 1’1
TIME TO DETECT (QtiASI-REPETITIONS)

FIGURE 5A

.-

500- 500-

84% 84%

400-- 7 400-- 7

FLIGHT CONTROL COMPUTATIONS
QUASI-REPETITIONS
COMBINED COMPONENT-LEVEL FAULTS

15.8% UNDETECTED

(0% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

1 2 3 4 5 6 7 B 9 10 11
TIME TO DETECT (QUASI-REPETITIONS)

FLIGHT CONTROL COMPUTATIONS
TRUE REPETITIONS
COMBINED GATE-LEVEL FAULTS

200 . T

62.5%

34% UNDETECTED

(21.0% UNDETECTED, CORRECTED FOR
INDISTINGUISHABLE FAULTS)

1 2 3 4 5 6 7 8 9 lo 11

TIME TO DETECT (REPETITIONS)

50
FIGURE 6’

URN MODEL DISTRIBUTION
FLIGHT CONTROL COMPUTATIONS
TRUE REPETITIONS
COMBINED GATE-LEVEL FiULTS

62.5%
I

I

I

100 . ; ~~~

I
-- I

I
I
I

- I
I
\
\
\
\

L
&II%

0 I
‘.I 0.5% -- I I I I I I I I

I I I I I I I I I I I

1 2 3 4 5 6 7 6 9 10 11

TIME TO DETECT (REPETITIONS)

- - - - _
FIGURE 7

51

6.0 SUMMARY OF EXPERIMENTS

6.1 Latency

l Most detected faults are detected in the first repetition. Subsequent
repetitions donot appreciably increase the proportion of detected
faults. However, it appears that short programs have a tendency to
benefit more from subsequent repetitions than lengthier programs
('. FCS). It is conjectured that shorter programs rely more
hla:;iy on inputs for failure mode excitation than their lengthier
counterparts.

l S-a-l faults are easier to detect than S-a-O 'faults.

l The micromemory (i.e., Partition #5) contains a large proportion of
undetected faults.

l A large proportion of faults remain undetected after as many as
8 repetitions. For example, in a flight control computation of 2200
instructions 21% of distinguishable gate-level faults remained
undetected.

l Component-level faults are easier to detect than gate-level faults.
As an example, Table 10 sumnarizes detection coverage of distinguish-
able gate-level faults for 8 repetitions of SERCOM, LINCON, QUAD and
FCS. Also shown are the respective coverages of the final self-test
program described in Section 7.0.

l The latency distributions for SERCOM, LINCON, QUAD and FCS are
uncorrected for indistinguishable faults. A detailed analysis of
6600 faults (see Section 7.0) indicates that the proportion of
indistinguishable (i.e., "don't care") faults in the BDX-930 is 16.5%.
The appropriate correction factors can be obtained by the method
described in Section 4.3. Table10 summarizes detection coverage of
distinguishable faults.

l Based on our experience with self-test (see Section 7.0) it may be
concluded that a program's ability to detect faults cannot be
characterized by the number of instructions or the instruction mix.
As a consequence , it is not surprising that a short program such as
QUAD (41 instructions) has a coverage of 70.3%, while a lengthy pro-
gram such as FCS (2200 instructions) has a coverage of only 79.0%.

l The distributions for LINCON are unique in that a very small propor-
tion of faults are detected in the second and subsequent repetitions.
In this respect it is similar to the distributions for the flight
control system when the latter was subdivided into quasi-repetitions
(see Figures 5a, 5b). In these experiments each program was executed,

52

effectively, for a single repetition. The other programs, on the
other hand, were executed repeatedly and in their entirety with a
different set of inputs for each pass. As a consequence, we believe
that the distribution for LINCON and the “QUASI FCS" are not
representative.

l Based upon these results for LINCON and QUASI FCS it appears that the
excitation supplied by inputs accounts.for most of the coverage in
the second and subsequent repetitions.

l .Detection coverage between the second and last repetitions varied
between 3.5% (FCS) and 8.6% (SERCOM). For the programs of the pre-
vious study these coverages were:

FETSTO: 8.4%
FIB: 7.0%
ADDSUB: 7.0%

l It is interesting to compare the gate-level latency distributions for
FETSTO, FIB and ADDSUB, obtained from the previous study, with those
for SERCOM, QUAD and FCS of the present study. The number of execu-
table instructions in each program are:

FETSTO: 6
FIB: 11
ADDSUB:
SERCOM: ii
QF"c;" : 41

. . 2200

The first three programs were limited to a simple instruction set,
whereas the last three used a variety of "high powered" instructions.

The respective latency distributions are shown in Figure 8. From the
figure it can be seen that the distributions are qualitatively similar
despite the dissimilarity of their programs. The major difference is
the distribution between coverage of the first repetition and total
coverage. It appears that lengthier programs yield a greater coverage
in the first repetition than shorter programs.

6.2 Urn Model

l The Urn Model can, at least qualitatively, characterize the shape of
a latency distribution. This can be attributed to (1) the monotonic
decreasing property of the empirical distribution and (2) the three
degrees-of-freedom which the Urn Model provides for a best fit.

53

l It is doubtful that the Urn Model parameters can be predicted for a
program on the basis of length or instruction mix.

l Table 11 summarizes the Urn Model parameters for combined, gate-level
faults for all of the programs of this and the previous study. Based
on these results, we make the following observations:

. . The Urn Model parameters are in general agreement with the
empirical distributions.

. . In every case, PO, the probability that a fault is.detected,
eventually, coincided with coverage after 8 repetitions.

. . In every case, PI, the probability that a fault is detected in
the first repetition , coincided with the empirical distribution.

In every case, P,(l-P), the probability that a fault is
l * detected in subsequent repetitions, was in close agreement

with the empirical distribution.

l Based upon the results from the LINCON and QUASI FCS experiments we
conjecture that, if the inputs are invariant, almost all detected
faults are detected in the first repetition and coverage during subse-
quent repetitions will be negligible. As a consequence, the observed
actual coverage during subsequent repetitionsmustbe due to varying
inputs.

The parameter, a, which gives the Urn Model distribution its exponen-
tial character, varies widely. It appears that "a" is a function
primarily of input excitation and is a measure of the effectiveness
of this excitation in fault detection.

54

t

,,nuammo

I

t
t

t

FIGURE 8. CbMPARlSQN OF FAULT LATENCY DISTRIBUTIONS

55

TABLE 10

COMPARISON OF GATE VERSUS COMPONENT-LEVEL COVERAGE *

Proqram Gate-Level Coverage** Component-Level Coverage**

SERCOM .659 .968

LINCON .66 .974

QUAD .703 .9928

FCS .79 1.0

Final Self-Test .92 .976

* Coverages have been corrected for indistinguishable faults

** After 8 repetitions

56

TABLE 11

Program

FETSTO
FIB

ADDSUB

SERCOM

LINCON

QUAD

FCS

Words a P PO POP* Po(l-P)**

6 .4386 .7776 .3845 .3 .086

11 .6823 .8366 .4184 .35 .0684

11 .4691 .8254 .4058 .33 .071

44 .4914 .8436 .55 .46 .086

l-24 .2424 .971 .551 .535 .016

41 .667 .8637 .587 .51 .08

2200 .875 .947 .66 .625 .04

URN MODEL PARAMETERS
COMBINED, GATE-LEVEL FAULTS

* POP = P, = proportion of faults detected in the first repetition

** Po(l-P) = proportion of faults detected in subsequent repetitions

57

7.0 SELF-TEST DESIGN AND VALIDATION

7.1 Initial Self-Test P-rogram

The initial self-test program was based on the belief that coverage could
be achieved by exercising a sufficiently large set of instructions irrespective
of their mechanization in hardware. As subsequent events proved, however, this
approach resulted in an inefficient self-test in that it tended to exercise some
hardware repeatedly while omitting to exercise a substantial proportion of the
remainder. Undoubtedly, the addition of more instructions would eventually
have achieved the desired coverage but at the cost of run-time and-memory.
As a consequence, it was decided to redesign the self-test program.

7.2 Pr_incip_al Tests

Based on an analysis of undetected faults in the initial self-test the major
effort was directed at the following hardware elements:

l Scratch Pad of 2901 (i.e., 16 accumulators).
o 9407 Address Processor.
a Arithmetic Logic Unit of 2901.
l Micromemory.

The gate-level equivalent circuits of these elements were analyzed to
determine which instructions and instruction sequences were most effective in
exercising the component gates. Since the test sequences were hardware inten-
sive and directed specifically at the BDX-930 computer a description of each
test would not be very illuminating to the reader, and would, moreover,
require a detailed analysis of the data paths exercised by each BDX-930
instruction. However, because the micromemory is generic to all computers
and presented the greatest challenge to fault detection, a brief description
of the micromemory test will be given.

Micromemory Test

The microprogram memory consists of 512, 56-bit microinstructions.
However, only 382 microinstructions are used. Moreover, the last three bits
of each word are also unused. Thus, the proportion of indistinguishable
faults is at least 29.4%.

All of the microinstructions used in previous tests were analyzed to
determine which microinstruction remained unexercised. Additional instructions
were added to exercise micromemory instruction coverage. The final micro-
instructionsetexercised 45.25% of the microinstructions. However, this did
not mean thatan equivalent proportion of faults would be detected. The
problem here was that many microinstructions contain branching conditions
which could only be exercised by multiple calls of the microinstruction.

58

In connection with micromemory fault detection two problems were
paramount:

1. High coverage required the execution of a large number of mi'cro-
instructions with an attendant increase in memory and real time.

2. It was extremely difficult to identify indistinguishable faults.
With no failure present it was relatjvely easy to identify mi.cromemory bits
that, by design, had no effect on operations. However, this was not the
case when a nominally "don't care" bit was in a failed state, Th.e identi-
fication process required the expertise of a computer designer, and even so,
it was a time comsuming process.

7.3 Self-Test Results

The design of the self-test program was anevolutionaryprocess. After
each update the resultant coverage was estimated via the emulator. Undetected
faults were analysed and the test again updated.

The initial self-test consisted of 1,100 words and required 7,777 micro-
cycle to complete. The test was reviewed to determine the most effective
tests. These were retained and the rest discarded. The first, modified test
consisted of 192 words and required 974 microcycles. After each revision a
new fault set was selected and faults were injected at the gate-level. All
successive revisions merely added new tests to those of its predecessors.
As a consequence , coverage could only improve with each revision.

The successive revisions and their corresponding coverages are tabulated
in 'fable 12. The development process was terminated following Revision 8.
The non-monotonic coverage is the result of statistical fluctuation. Table 13.‘
shows the gate-level coverage of Revision 8 by partitions. It is interesting
to compare these results with those of the initial self-test, which are given
in Table 14. The accuracy for 3,000 faults is 51% with 95% confidence.
Table 15 shows the component-level coverage of Revision 8 by partitions. The
corresponding results of the initial self-test are given in Table 16.

Examination of coverage by partitions.(Table.l3) indicates that the
worst coverage was in the micromemory and control proms. It is clear that
the only way to improve coverage of these devices is to increase the number
of microinstructions executed by self-test. Since the conservation of memory
was an important design goal this approach was rejected.

Another reason for poor coverage of the micromemory was the way that the
unit was emulated, i.e., at the cell-level, with each cell assumed to be
independent of other cells. The failure rate of the device was then equally
distributed over the cells. A more realistic approach, and a less conservative
one from the standpoint of coverage, would have been to emulate the buffers,

59

column and row decoders, as well as the memory cells. From "MIL-HDBK-2l7C,
Notice 1, 72oC, uninhibited aircraft environment" the proportion of failure
rate for these components (54S5472) is

0.326 for the memory cells
0.674 for the buffer and decoders, etc.

If it assumed that detection of faults in the buffers and decoders is 100%
then the 114 undetected faults is Partition 5 (of Table 13) become

0.326 x 114 = 37

and ttie resultant number of detected faults would be

219 instead of 142.

The resultant coverage would then be

2409 = 0.951 (95.1%).
2534

7.3.1 Indistinguishable Faults

Based on a sample of 6,600 gate-level faults the proportion of indistin-
guishable faults are given in Table i7; by partitions. The large proportion
of indistinguishable faults (i.e., 16.5%) and the necessity to identify each
one in the estimation of coverage were the major obstacles in the self-test
design and validation process, We note that the proportion of indistinguish-
able faults was estimated to be 23.7% in the earlier study, based on a sample
of 300 gate-level faults.

60

7.4 Summary and Conclusions

Emulation appears to be an indispensable tool in the design and
validation of an efficient self-test program.

Self-test should be designed tocapitalize on the hardware mechanization
of the instruction set. Emphasis should be placed on detecting faults
in the least reliable component.

Pin-level faults are easier to detect than gate-level faults. The
latter tend to be highly data-dependent. Coverage of pin-level
faults did not change significantly between the initial self-test
and the final revision.

l The "box" scoreforthe initial and final self-test program is

Coverage
Gate-Level Component-Level Words of Memory Cycle Time

Initial 86.5% 97.9% 1100 7777

Final 92.0% 97.6% 346 2062

l The worst coverage was in the micromemory. A more realistic emulation
of these devices, which included buffers, column and row decoders,
would have yielded a significant improvement ih total coverage, e.g.,
to 95.1x,

l Based on our experience and observations, thus far, we conjecture
that virtually any self-test program of 200 words or more, in which
even a modest effort wastakento exercise the major hardware components,
will yield a gate-level fault coverage of 85%.

Coverages greater than 90%, however, are a different matter, as
evidenced by the successive self-tests of Table 12. The situation
could be improved significantly if processors incorporated a direct
means of testing the micromemory and control proms either through
a parity checker or,more preferably, by making the contents of the
memories directly accessible to the programmer.

61

pJJ

1

_ 2

3

4

5

6

7

8

9

10

11

REVISION WORDS MICROCYCLES FAULTS 1 - a

0 (Initial) 1100 7777

1 192 974

2 202 1017

3 230 1430

4 260 1698

5 295 1802

6 330 1992

7 334 2043

8 (Final) 346 2062

8 (Final) 346 2062

8 (Final) 346 2062

300 86,4(%)

300 88.0

300 88.6

300 87.9

300 92.3

500 93.3

1000 94.4

1000 93.4

1000 91.9

1000 92.5

1000 91.5

TABLE 12

CPU SELF-TEST REVISIONS
GATE-LEVEL COVERAGE

1 -a = coverage when indistinguishable faults are disqualified

62

PARTITION

TABLE 13

FINAL SELF-TEST,

GATE-LEVEL COVERAGE BY PARTITIONS

FAULTS NOT DETECTED
INJECTED DIST. INDIST. DETECTED ' - a

553 22

475 12

639 11

741 14

501 114

91 29

3000 202

1 -a = 2332- =
2534

30 501 95.8(%)

37 426 97.3

75 553 98.0

32 695 98.0

245 142 55.5

47 15 34.1

466 2332

.92 (92.%)

63

PARTITION

TABLE 14

INITIAL SELF-TEST

GATE-LEVEL COVERAGE BY PARTITIONS

TOTAL
INJECTED

UNDETECTED
DIST. INDIST.

34 4 2

74 7 9

55 0 16

74 9 6

50 8 33

13 3 5 - -

300 31 71

DETECTED

28

58

39

59

9

5 -

198

l- a =B =
229 .865 (86.5%)

64

TABLE 15

FINAL SELF-TEST

COMPONENT-LEVEL COVERAGE BY PARTITIONS

FAULTS NOT DETECTED
PARTITION INJECTED DIST. INDIST.

1 76 3

2 100 1

3 106 0

4 118 5

400 9

l-a = 367 ’
376

1 72 96.0(%)

9 90 99.0

14 92 100

0 113 95.8

DETECTED 1 - a

24 367

= .976 (97.6%)

65

PARTITION

TABLE 16

INITIAL SELF-TEST

COMPONENT-LEVEL COVERAGE BY PARTITIONS

FAULTS
INJECTED NOT DETECTED

1 35 1

2 73 1

3 43 2

4 38 0 -

189* 4

DETECTED

34

72

41

38

185

1 - a = $$ = .979 (97.9%)

* 11 faults were disqualified as indistinguishable.

66

TABLE 17

PROPORTION OF INDISTINGUISHABLE FAULTS (7)

PARTITION TOTAL # INJECTED FAULTS INDISTINGUISHABLE Y

1 1174 57 .049

2 1150 88 .077

3 1352 186 .138

4 1633 72 .044

5 1100 589 .535

6 191 96 .503

TOTAL PROPORTION OF INDISTINGUISHABLE FAULTS = 16.5%

67

Severa 1 mode 1s have been investigated in an attempt to characterize the
dynamics of fault propagation in a digital computer. Although simplistic in
their assumptions, these models may, nevertheless, provide insight into this
undoubtedly complex process. It has been conjectured (ref. 2) that the dis-
tribution of latency can be modelled by analogy with balls in an urn. We
prefer to employ a different analogy although the resultant distributions are
the same.

8.0 URN MODEL

8.1 Urn Model Description

We postulate that the computer can be subdivided into three sets of
mutually exclusive components Cl, C2, C3 such that

c1 = Set of components randomly exercised by the program

C2 = Set of components continually exercised by the program

c3 = Set of components never exercised by the program.

We make the further assumption that a fault is detected if and only if
the faulted component is exercised. The scenario is that of an avionics com-
puter executing two software programs one of which is executed full-time and
the other, part-time. The components that are exercised by the full-time
mode are denoted by C2 and those exercised by the part-time mode by Cl.

Neither the full-time or part-time modes exercise components, C3.

We assume that the part-time mode is exercised randpmly. If the unit of
time is a repetition of the full-time program then we postulate that the
excitation is Poisson-distributed in time with a = probability that the part-
time mode is exercised in a repetition of the full-time program.

Let A1 = Failure rate of Cl (Failures/hour)

x2 = Failure rate of C2 (Failures/hour)

X3 = Failure rate of C3 (Failures/hour)

x =
9 = A2 + x3 (Failures/hour)

We now derive the latency distribution given that a fault has just
occurred. The distribution is defined in terms of three parameters, a, P
and Q, where

68

P = Probability that the fault is detected in the first repetition given
that it occurred in sets Cl or C2

Qo = Probability that the fault is never detected.

It is easy to derive the following relationships:

5 x2 x3 1) P6=1-Qo=X+T,Qo=X

‘2 + a '1 '2 + a ‘1
x x x x

2) P = = 9

ijhere PO = Probability that the fault is detected eventually.

If 'k = probability that the fault is detected in the k-th repetition and
not detected in a previous repetition, k = 1, 2, 3,) n,

qn+l = probability that the fault is not detected in the previous n
repetitions,

then

p1 = PO P x2 ll
=X+a x

p2
9 = (1 - P) a PO = a (1 - a) x

3) !

'n = (1 - P) (1 - a)n-2 a PO = a(1 -a)n-l 2, n = 2, 3, . . .
co

qn+l = Q, + c 'k = Q, + (1 - P) PO (1 - a)n-l

k = n+l
X3 9 = x + (lo - a)” h , n = 1, 2, 3, . . .

69

Observe that

n

qn+l
+ c 'k = 1, as expected.

k 1 =

In estimating the above distribution the number of repetitions will be
limited to eight. Then, the study will estimate the quantities

for S-a-l, S-a-O and combined faults.

It is easy to shown that the Urn Model can be represented as a Markov
Model, as shown in Figure 9.

70

FAULT
OCCURS
FAULT
OCCURS

FIGURE 9 MARKOV MODEL REPRESENTATION OF THE URN MODEL

9.0. ESTIMATORS

As indicated previously, the principal objective of the study is to
obtain estimates of fault coverage and fault latency in a typical avionics
miniprocessor. Although the statistical experiments were carefully designed
to yield high accuracy and confidence for the least cost the estimates should
not be taken too literally. The reader is advised to exercise engineering
judgement in interpreting the results especially when inferring conclusions
that depend upon small differences in the estimates. The reason for caution
is the uncertainty in the assumptions underlying the study - assumptions which
may, if incorrect or inaccurate, contribute a far greater uncertainty to the
results than the statistical analysis would imply.

For the record, the critical assumptions of the 'study are:

l From the standpoint of failure modes and effects every device can be
represented by the manufacturer-supplied gate-level, equivalent
circuit.

l Every fault can be represented as either a S-a-O or S-a-l at a gate
node.

l The failure rate of each device is equally distributed over the gates
of the gate-level equivalent circuit.

l The failure rate of each gate is equally distributed over the nodes
of the gate.

l Memory failures are exclusively faults of single bits.

9.1 Estimators for Self-Test Coverage

The estimators for x, y and z are

1) x*="d
-iii

2) y* = "d
Yi

3) z" = "d + "d
m+n

72

where

X¶ Y, z = probability that a S-a-O, S-a-l, combined fault is detected;

m , n d d = number of S-a-O, S-a-l faults detected;

m, n = number of S-a-O, S-a-l faults injected.

I
A more accurate estimate of z can be obtained if stratified sampling is

employed. For example, let

i aX = proportion of S-a-O faults in the fault set of the processor
I'

aY
= proportion of S-a-l faults in the fault set of the processor

where a
X

+a =1.
Y

If m and n are selected such that

m=a x N, n = ay N

where

N = total number of faults injected,

then

z* = a x*+a
X Y y*

is more accurate than (3) if x # y. Although stratified sampling was not
intentionally employed in the study the actual selection resulted in an
almost equal number of S-a-O and S-a-l faults.(*)

9.2 Estimators for Latency

The estimators for xkY yk an Zk are

4) yk* = "k
Ti-

'k* = mk + "k , k + 1, 2, 3, 8,
m+n

* In the selection process a, = a
Y

= 0.5, i.e., S-a-O and S-a-l faults were
equally likely.

73

where

Xk' Yk' Zk = probability that a S-a-O, S-a-l, combined fault is
detected in the k-th repetition;

m k k , n = number of S-a-O, S-a-l faults detected in the k-th repetition.

With some abuse of terminology we define

X9’ Yg’ zg = probability that a S-a-O, S-a-l, combined fault is not
detected in the previous 8 repetitions. '

We note that x9 corresponds to og of Section 8. The estimators for x9, yg

and zg are

x9* = m - ml - m2 - . . . - m8 = 1 - x
m

1* - x2* - . . . - x8*

5) Yg* = n - “1 - “2 - ‘*’ - “8 = 1 - yl* _ y2* _ . . . _ y8+
n

z9* =
lllx*+ny*

grn + n 9 = 1 - zl* - z2* - . . . - z8*’

9.3 Estimators for Urn Model Parameters

The method of estimation will be described for S-a-O latency di;;tribu-

tions. With an obvious change in parameters, e.g., mk, the estimates can be

applied to S-a-l and combined latency distributions, as well.

The method is based on the principal of maximum likelihood. We note

that mk S-a-O faults are detected in the k-th repetition. Accordingly, we

seek Urn Model parameters a, P and PO that maximize the likelihood function

L
ml “2 m8 m9 = Pl P2 '-- f+3 qg

74

where

Pl = PO P

p2 = (1 - P) a PO

p3 = (1 - P) a PO (1 - a)

6) : .

p8 = (1 - P) a PO (1 - a)6

9 = Q,+ (1 - P) PO (1 - a)7

and mg = m - ml - m2 - . . . - m8

(See Section 8.1 for a definition of the Urn Model).

The maximum likelihood estimators for a, P and PO are obtained.as the
solution of

e = 0, ;+ = 0, j+ = 0.
0

Instead of solving these equations for the maximum likelihood estimators,
we will employ an approximation that was suggested in (ref. 2). There,
it was assumed that

qg = 1 - PO = Q,.

In other words, detectable faults are always detected in the first 8
repetitions. From (6) this is equivalent to the approximation

7) (1 - P) PO (1 - a)7 = 0.

If this substitution is made in the likelihood function, L, then the resultant
estimates are, for S-a-O faults,

75

8

p,” = $
c

m. 1
i=l

p* = ml
8

c mi
8) i=l

8

c
m. - m I 1 .

a* = ’ = 1
8 8

c ill+ - c mi
i=l i=l

The results of (ref. 1) confirmed the accuracy of these approximations.

9.4 Accuracy and Confidence of Coverage Estimates

9.4.1 Self-Test Coverage

It can be shown (ref. 3) that

9) E (x*> = x, E (y*) = y, E (z*) = z

and

E ((x _ x*)*) = dfd

10) E ((y - y*)* > = +

E ((z _ z*)*) = w

where

E (0) = expected value of (.) .

76

For m, n and N sufficiently large the estimators x*, y* and z* are approxi-
mately Gaussian with means and variances given by (9) and (lo), respectively.

The following derivation of accuracy and confidence is general and
applies to any quantity, x, estimated by the method of Section 9.1. As before,

x* = estimate of x

b = sample size.

It is well-known (See (ref. 4), for example) that the probatiility that
x lies between the limits

* (
x* + i&i x*+x J”7”’

or, equivalently, that x * lies between the limits

11) x+x
J

w

is equal to y, where y is the area of the standard Gaussian distribution
between -X and X. From (10) we may say that the error in the estimate, x*,
is

12) E=X
J

x (1 - x)
m

with a confidence level of y.

Equation (12) is an ellipse in x and E. Table 18 gives a tabulation of
EK versus x for a confidence level of y = .95.

It is often convenient to obtain error estimates that are independent of
From (12) it can be seen that the maximum error occurs when x = %.

;able 19 gives a tabulation of this maximum error versus sample size and
confidence level. It is noted that the maximum error can be extremely
conservative.

77

9.4.2 Latency Estimate

For the latency distributions the estimate of most interest is the cover-
age after 8 repetitions. The accuracy and confidence of these estimates are
obtained exactly as for self-test coverage estimates. Thus, if

z* = estimated coverage of combined faults after 8 repetitions, then

E ((z - z*)*) = z
m '

9.4.3 Urn Model Parameter Estimates

It was shown in (ref. 1) that, using the estimators of (8), we obtain

E ((P - P*)*) = w
0

E ((PO - PO*)*) = Po (1 - Po)
m

E ((a - a*)*) =
a* (1 - a)

m PO (1 - P)

and the cross-covariances vanish. Thus the estimates are independent and, at
a confidence level of y, the errors are, for P, PO, a, respectively,

EPo = x J PO (1 - PO)
m

where X is as defined in Section 9.4.1.

78

TABLE 18

ERROR FOR A CONFIDENCE LEVEL OF 7 = .95

X

0.0 0

.427 .os

sa8 .l

.70 .15

.784 .2

,849 .2s

.a98 .3

.935 .35

.960 .4

.975 .45

.9a .5

.975 .55

.96 .6

.935 .65

.a98 .7

.a49 .75

,784 .a

.7 .a5

,588 .9

.427 .95

0.0 1.0

79

TABLE 19

WORST CASE GAUSSIAN
ERROR VERSUS

SAMPLE SIZE AND CONFIDENCE LEVEL

.6 .03 .025 .021 .017 .013

.7 .037 .03 .026 .021 .q17

.a .046 .038 .033 .027 .021

.9 .058 .048 .041 .034 .026

.95 .069

80

10.0 EMULATION CHARACTERISTICS

10.1 BDX-930 Architecture

The BDX-930 Digital Processor is a microprogrammed, pipelined machine
designed around the AMD2901A four bit microprocessor slice. The machine
contains sixteen general purpose registers of which four registers may be
loaded directly from memory and two registers may be used as base registers.
One register is used as a stack pointer.

The program counter and memory address register are contained in the
9407, a chip designed to perform memory address arithmetic. Along with a
temporary register contained on the same chip, the BDX-930 is able to perform
four basic addressing modes involving three registers and various instruction
fields.

The machine contains three memory interface data registers which are
used to input and output memory data. There are also a number of one bit
status flag registers that can be manipulated under program control. This
includes the Fl and F2 registers, which are hardware flags, and the interrupt
enable, overflow status registers. There also exist the indirect and link
registers used by the microcode for branching.

The microcode is contained in seven proms and a pipeline register is
included for simultaneous microcode fetch and decoding. Various internal
and external conditions can affect microcode branching as selected by the
microcode itself and a microcode control prom. In addition to a rich
instruction set which includes 16 and 32 bit fixed point operations, there
is a test set interface in the microcode. A selectable saturate mode is
available which limits the results of arithmetic operations when overflow or
underflow occur.

For simulation purposes, the computer has been divided into six parti-
tions, consisting of the following principal devices:

Partition 1 - Address Processor

l 4 - 9407 Memory Address Processor Equivalent Circuit

l Selector Chips to Multiplex Memory Address Source

. . 4- 54LS352 4:l

. . 2- 54LS158 2:l

Partition 2 - Data and Status Registers

0 2 - 54LS374 Memory Input Buffer Register

0 2 - 54LS374 Memory Output Buffer Register

81

0 2 - 54LS374 Next Instruction Register

0 3 - 54LS113 Single Bit Registers for

. . overflow

. . indirect addressing

. . link (bit carry for divide)
interrupt mode

1: Fl and F2

0 2 - 54LS153 Select Overflow, Link, and Indirect Bit Sources

l 2 - 54LS245 Octal Bus Transceivers

Partition 3 - Microcontroller

l Pipeline Register

. . 4 - 54LS273 Octal l.!atch

. . 4 - 54LS175 Quad Latch

. . 1 - 54LS374 Octal Latch With Tri-State

0 1 - 54LS273 External Signal Synchronizer

0 3 - 54LS151 Selectors 8:l for Branch Conditions

0 1 - 54LS169 Counter for Shift and Multiply Instructions

0 1 - 54LS169 Counter for Multiple Register Load-Store Instructions

0 1 - 54LS377 Instruction Register

0 l- 54LS253 Microcode Branch Selector

Partition 4 - Execute

0 4- AMD2901A 4 Bit Slice ALU

0 1 - AMD2902 Lookahead Carry

0 2 - 54LS153 Selector 4:l Register Selectors

0 l- 54LS253 Selector 4:l Shift Bit Selector

a2

Partition 5 - Microcode

0 7 - 54S472 Proms with 56 Bit Wide Microcode

Partition 6 - Control Proms

l 1 - 54S472 Prom Microcode Start Address for Macroinstructions

l 1 - 54S288 Prom Control for Microcode Branch

Instruction execution is accomplished by a pipelined architecture; various
stages of execution occur simultaneously for a sequence of instructions. Con-
sider; for instance, four instructions, A,B,C,D, to be executed in sequence.
During the same clock cycle it is possible for the program counter to be
incremented to point to instruction D, while instruction C is being fetched,
instruction B is being decoded and instruction A is being executed.

With this level of parallelism, it will be noted that when the execution
phase of an instruction is one clock cycle, the average time to perform the
entire instruction will be one clock cycle.

It should also be noted that the partitioning of the BDX-930 is roughly
broken up into the stages of the pipe: - address, fetch, decode, and execute.
These stages of the pipe are joined by various buses throughout the CPU.
These buses are formed from tri-state logic and some are bidirectional. An
enumeration of the major buses includes

0 Y - Connects the output of the ALU (AMD2901A) to the address processor
and the output register. In addition, it connects the output of the
next instruction buffer to the start address register and instruction
register.

l D - Connects the memory data register and the program counter to the
input of the ALU.

l DAT - Bidirectional bus connecting memory and I/O to the memory data
register and output register.

l M - Bidirectional memory data bus

l MAR - Memory Address Bus

0 u- Microcode Bus

l IR- Instruction Register

A list of the devices used in the BDX-930 and their failure rates is
given in Table 20. The data was obtained from MIL-HDBK217B Notice 2.

a3

10.2 Description of the Emulator

The emulation includes the components of the CPU (Central Processor
Unit), scratchpad memory and those portions of the program memory containing
the target programs and the target self-test program. The emulation is
derived from the circuit schematics. Each device is represented by a gate-
level equivalent circuit supplied by the chip manufacturer. It was found
that six types of gates were sufficient to represent any device, e.g., NAND,
AND, OR, NOT, NOR, EXCLUSIVE OR. Table 21 gives the number of equivalent
gates in each device of the CPU. In all, 5,100 gates were required. In the
interests of reducing execution time , it was not expedient to emulate all
components at the gate-level. The following elements are represented at the
functional-level:

program memory
scratchpad memory
microprogram and control memories
16 general purpose arithmetic registers.

The emulation did not include the direct memory access unit (DMA) or any
of the devices of the I/O. The emulated devices of the CPU are shown in
Figure 10.

Faults were injected into all devices except the program and scratchpad
memories. Because the program memory is "read-only", no processor, faulted
or not, is permitted to write into this memory. However, even though the
scratchpad memory is never faulted, a faulty processor can write into it. As
a consequence, in the parallel mode of operation where 32 processors are
simultaneously emulated, the corresponding 32 scratchpad memories are also
emulated.

No delay has been simulated between logic gates. It is assumed that all
combinatorial logic is stable at the output the instant an input pattern is
applied to it. This means that each time the input is changed, the network
need only be evaluated once to supply the correct output pattern. Operating
in this manner is very time efficient, but puts stringent requirements on the
order of evaluation of the gates. To be able to meet these requirements, the
logic is levelized, i.e., placed in groups or levels that represent the proper
order of evaluation.

The emulator utilizes the parallel method of logic simulation and was
hosted on a VAX-11/780. The data word of a VAX-11 contains 32 bits; each bit
position is used to represent a different machine. The simplest gate opera-
tions are represented by a single Boolean instruction; when the two inputs
occupy the same bit positions in their respective words, the output also
occupies this bit position. The advantage of this technique is execution time
savings. Typically, the amount of code necessary to simulate 32 machines is
of the same order as the amount of code necessary to simulate only one machine.
The BDX-930 description is contained in compiled code, rather than in tables,
which was also done for speed.

a4

I

Certain portions of the machine , notably the memory elements, were repre-
sented at a functional level rather than a gate level. For microprogram
memory, two words of VAX-11 storage contain 56 bits of microstore; at micro
memory fetch time, these bits are retrieved from the proper address for each
of the simulated machines and combined to form suitable words to interface
the gate portion of the emulation. The ROM portion of main memory is handled
in the same manner. Writable store contains a routine to translate the gate
inputs into consecutive VAX-11 storage words so that there is one copy of
writable storage for each machine being emulated. On reading this storage,
the process is reversed.

In a typical run of the emulator, 32 different machines are exercised;
31 faulted machines and one good machine. Each faulted machine is assumed to
have a single hard fault at one node, either stuck-at-one (S-a-l) or stuck-
at-zero (S-a-O). The faults are injected by defining extra gates at each
node, an AND gate for stuck at zero and an OR gate for stuck-at-one.. A typi-
cal AND gate using this technique is shown in Figure 11.

When the entire emulation is executed for true values, the ratio of VAX-
11 time to BDX-930 time is 5OOO:l; with faults injected in one partition,
the number is 7OOO:l.

a5

TABLE 20

COMPONENTS 06 THE BDX-930 CPU

DEVI CE
9407
2901A
2902
5440
54125

FAILURE RATE/PER
UNIT

(PPMH)
1.3931
2.1656
0.3898
0.0653
0.0855

54500
54504

0.0855
0.1003

54510 0.0764
54520 0.0654
54532 0.2138

545288 (32x8 prom)
545472 (512x8 proms)
54LSOO
54LSO2
-54LS04
54Lsoa
54LSll

54LS86
54LS113
54LS151
54LS153
54~~158
54LS169
54LS175
54LS245
54LS253

0.1787
1.008

0.084
0.084
0.0983

0.0752
0.084
0.084
0.1447
0.1483
0.1447
0.1410
0.6603
0.1703
0.3792
0.1447

54LS273 0.6882

54LS352 0.3117
54LS367 0.1100
54LS374 0.7234
54LS377 0.7148

86

TABLE 21

MICROCIRCUITS AND EQUIVALENT GATE COUNT

DEVfCE EQUIVALENT GATES

2901A 798

2902 19

54113 a

54151 17

54153 16

54158 15

54169 58

54175 22

54245 18

54253 16

54273 34

54352 16

54374 26

54377 35

9407 143

87

:

DID --

* *
:

UD YL
.

w L

I = PARTITION NUMBER

FIGURE 10 BDX-930 PROCESSOR

FIGURE 11A

NON-FAULTED “AND” GATE

ORIGINAL GATE

r --B
1

I I
I I

I
I I
I

I
I

-

I

I- d- -I

8:ea S-r-l
INPUT OR OUTPUT OUTPUT

8-d FAULT S-a-1
FAULT

FIGURE 11B

FAULT MODEL OF “AND” GATE

a9

11.0 CONCLUSIONS

On the basis of the study we conclude:

o The present study substantiates the results of the previous study.
The only difference was in the conjecture that detection is a linear
function of the number of instructions. The present study demon-
strates that coverage is independent of the length of the program.

l Emulation is a practicable approach to failure modes and effects
analysis of a digital processor.

o The run time of the emulated processor on a VAX-11/780 host computer
is only 5000 to 7000 times slower than the actual processor. As a
consequence, large numbers of faults can be studied at relatively
little cost and in a timely manner.

l The fault model, although somewhat arbitrary, can be updated as more
data becomes available.

l Gate-level faults are more difficult to detect than component-level
faults. As a consequence , coverage requirements should be explicit
as to the types of faults to be covered.

l In a comparison-monitdred system the accumulation of latent faults
can be significant. For example, in a flight control program of
2200 instruction, 21% of all distinguishable faults remained unde-
tected after 8 repetitions. The impact of this accumulation on
aircraft survivability has yet to be determined.

l Self-test should be designed to capitalize on the hardware mechan-
- ization of the CPU.

l It is relatively easy to generate a self-test with a gate-level
coverage between 85% and 90%, To obtain a coverage of 95% is d

l It is relatively easy to obtain component-level coverage in exe
95%.

ifficult.

ess of

l Faults in the micromemory are difficult to detect. This situation
could be improved if future processors incorporated a direct means of
testing, either by a parity check or, more preferably, by making the
contents of the micromemory accessible to the programmer.

l A large proportion of faults, i.e., 16.5% were indistinguishable
('
fZ.

"don't care"). It was extremely difficult to identify these

90

I

l The Urn Model can characterize the shape of the latency distribution.
This can be attributed to:

1) The monotonic, decreasing property of the empirical distribution

2) The 3 degrees-of-freedom which the model provides for a best fit.

l It is .doubtful that the Urn Model parameters can be predicted for a
program on the basis of length or instruction mix.

91

12.0 REFERENCES

1. McGough, J., Swern, F., "Measurement of Fault Latency
in a Digital Avionic Mini Processor", NASA CR-3462,
NASA Langley Research Center, Hampton, VA, October, 1981.

2. Nagel, P., "Modelinq of a Latent Fault Detector in a
Digital System", NASA CR-145371, 1978.

3. McFarlane Mood, A., 'Introduction to the Theory of
Statistics", McGraw-Hill; New York,, 1950.

4. Cramer, H., "Mathematical Methods of Statistics", Princeton
University Press; Princeton, 1958.

92

.

NASA CR-3651 -
4. Titlr and Subtlclr 5. Aclmrt Dia

MEASUREMENT OF FAULT LATENCY IN A DIGITAL AVIONIC January 1983

MINI PROCESSOR - PART II 6. Performing Organization Coda

6. Performing Organuation Report No.

John G. McGough and Fred Swern

6. Performing Organizrfion Namr and Address

Flight Systems Division
Bendix Corporation
Teterboro, N.J. 07608

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

10. Work Unit No.

11. Contract or Grant No.

NASl-15946
13. Type of Repot and Period Coverad

Contractor Report
14. Spanswing Agency Gxk

I
5. Supplemen~rry Notes

Langley NASA Project Engineer: Salvatore J. Bavuso
Prog.ress Report

6. Abstract

This report describes the results of fault injection experiments utilizing
a gate-level emulationof the central proces.sor unit of the Bendix BDX-930
digital computer. The study is an extension of a previous study:

Measurement of Fault Latency in a Digital Avionic Mini Processor
NASA CR-3462, October 1981.

The poor coverage of comparison-monitoring, which the earlier study demon-
strated, could have been due to the limited repertoire of the instruction
set used. As a consequence , it was decided to reprogram several earlier
programs but this time expanding the instruction set to capitalize on the
full power of the BDX-930 computer. As a final demonstration of fault
cov.erage an
was added.

extensive, 3-axis', high performance flight control computation

A secondary objective of the study was to demonstrate the stages in the
development of a CPU self-test program emphasizing the relationship
between fau 1 t coverage, speed and quantity of instructions.

r. Key Words Ckqgested by Authw(sl)

Emulation Self-Test
Gate-Level
Fault Detection
Fault Latency

18. Distribution Statement

Unclassified - Unlimited

Subject Category 59
anson-Monitori nq

1. 5ecwitv Classif. (of this report1 20. -%curitv Classif. lof this pago) 21. No. of Pages 22. kc@

Unclassified Unclassified 94 A0.5

FOr w by the Nwional Technical Information Swvice, Springfield. Virginia 22161

RASA-Lang1 ey, 1983

